فراکتال چیست؟<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

مفهوم هندسه فراکتالی بسیار ساده است . این مبحث به دانستن سه مطلب اصلی که در ریاضی دوره دبیرستان آموختیم ، نیاز دارد :

الف) توابع              ب) نمودارها              ج)اعداد مختلط

به ساده ترين بيان فراكتال ها:

1-    خود همانند هستند و آرايش تكرار شونده دارند.

2-    بعد اعشاري دارند.

در مورد اين ويژگي ها بعداً توضيح خواهيم داد.

 

خود همانندي در اشكال هندسي

فراكتال ها خود همانند(خود متشابه) هستند بدين معني كه:

يك فراكتال: درهر اندازه اي، وبا هر مقياسي، مشابه مقیاسهای دیگر به نظر مي رسد. (کل شکل از اجزايي مشابه شکل اول تشکيل شده است.)
 به اين خاصيت خود همانندي مي گويند

مثلا درمثلث سرپینسکیtriangle.gifمثلث بزرگ از مجموعه اي مثلثهاي همسان به وجود آمده است. اين يکي ازخصوصيات زيباي فراکتالهاست که همزمان از سوي طبيعت و فناوري به کار گرفته شده است.اگر تا به حال به يک برگ سرخس نگاه کرده باشيد، مي توانيد متوجه تشابه اجزاي مختلف آن شويد. ساختار کل ساقه همانند يک برگ و ساختار يک برگ همانند يک جزو کوچک آن است.
اگر فرصت کرديد نگاهي هم به سواحل درياها يا تصاوير هوايي کوهستان ها و گياهان اطرافتان بيندازيد،بسرعت درخواهيد يافت که در جهاني آشوب زده احاطه شده ايد. اگر هنوز از اين موجودات ساده و در عين حال پيچيده هيجان زده نشده ايد، اين نکته را هم بشنويد.اين اجسام نه يک بعدي اند، نه دو بعدي و نه سه بعدي.
اين ها ابعادي کسري دارند. فراکتالها دقيقا به دليل همين خاصيت ويژه اي که دارند، زماني توانستند روشي براي ذخيره سازي تصاوير ارائه دهند. معمولا زماني که يک تصوير گرافيکي قرار است به شکل يک فايل تصويري ذخيره شود، بايد مشخصات هرنقطه از آن (شامل محل قرار گيري پيکسل و رنگ آن به صورت داده هايي عدي ذخيره شود و زماني که يک مرور گر بخواهد اين فايل را براي شما به تصوير بکشد و نمايش دهد، بايد بتواند اين کدهاي عدي را به ويژگيهاي گرافيکي تبديل کند و آن را به نمايش بگذارد. مشکلي که در اين کار وجود دارد، حجم بالايي از داده ها ست که بايد از سوي نرم افزار ضبط کننده و توليد کننده بررسي شود.
اگر بخواهيم تصوير نهايي ما کيفيتي عالي داشته باشد،نيازمند آنيم که اطلاعات هريک از نقاط تشکيل دهنده تصاوير را با دقت بالايي مشخص و ثبت کنيم و اين حجم بسيار بالايي از حافظه را به خود اختصاص مي دهد، به همين دليل ، روشهايي براي فشرده سازي تصوير ارائه مي شود.
اگر نگاهي به فايلهايي که با پسوندهاي مختلف ضبط شده اند، بيندازيد متوجه تفاوت فاحش حجم آنها مي شويد. برخي از اين فرمتها با پذيرفتن افت کيفيت بين تصوير توليدي و آنچه آنها ذخيره مي کنند، عملا اين امکان را در اختيار مردم قرار مي دهند، که بتوانند فايلها و تصاوير خود را روي فلاپي ها و با حجم کمتر ذخيره کنند يا روي اينترنت قرار دهند.
براي اين فشرده سازي از روشهاي مختفي استفاده مي شود. درواقع در اين فشرده سازي ها بر اساس برخي الگوريتم هاي کار آمد سعي مي شود به جاي ضبط تمام داده هاي يک پيکسل مشخصات اساسي از يک ناحيه ذخيره شود، که هنگام باز سازي تصوير نقشي اساسي تر را ايفا مي کنند.
در اينجاست که روش فراکتالي اهميت خود را نشان مي داد. در يکي از روشهايي که در اين باره مطرح شد و با استقبال بسيار خوبي از سوي طراحان مواجه شد، روش استفاده از خاصيت الگوهاي فراکتالي بود. در اين روش از اين ويژگي اصلي فراکتالها استفاده مي شد که جزيي از يک تصوير در کل آن تکرار مي شود.براي درک بهتر به يک مثال نگاهي بيندازيم. فرض کنيد تصويري از يک برگ سرخس تهيه کرده ايد و قصد ذخيره کردن آن را داريد.
همان طور که قبلا هم اشاره شد، اين برگ ساختاري کاملا فراکتالي دارد؛ يعني اجزاي کوچک تشکيل دهنده در ساختار بزرگ تکرار مي شود.
بخشي از يک برگ کوچک ،برگ را مي سازد و کنار هم قرار گرفتن برگها ساقه اصلي را تشکيل مي دهد. اگر بخواهيم تصوير اين برگ را به روش عادي ذخيره کنيم ، بايد مشخصات ميليون ها نقطه اين برگ را دانه به دانه ثبت کنيم ، اما راه ديگري هم وجود دارد. بياييد و مشخصات تنها يکي از دانه هاي اصلي را ضبط کنيد. در اين هنگام با اضافه کردن چند عملگر رياضي ساده بقيه برگ را مي توانيد توليد کنيد.
در واقع ، با در اختيار داشتن اين بلوک ساختماني و اعمال عملگرهايي چون دوران حول محورهاي مختلف ، بزرگ کردن يا کوچک کردن و انتقال مي توان حجم تصوير ذخيره شده را به طور قابل توجهي کاهش داد.
در اين روش نرم افزار نمايشگر شما هنگامي که مي خواهد تصوير را بازسازي کند، بايد ابتدا بلوک کوچک را شبيه سازي کرده ، سپس عملگرهاي رياضي را روي آن اعمال کند، تا نتيجه نهايي حاصل شود.
به نظر مي رسد اين روش مي تواند حجم نهايي را به شکل قابل ملاحظه اي کاهش دهد، اما تنها يک مشکل کوچک وجود دارد و آن هم اين نکته است که همه اشياي اطراف ما برگ سرخس نيستند و بنابراين الگوهاي تکرار در آنها هميشه اينقدر آشکار نيست.
بنابراين بايد روشي بتواند الگوهاي فراکتالي حاضر در يک تصوير را شناسايي کنند و در صورت امکان آن را اعمال کند.
به همين دليل ، معمولا روش فراکتالي با روشهاي فشرده سازي ديگر همزمان به کار برده مي شود؛ يعني اگر الگوهاي تکرار چندان پررنگ نبودند، بازهم فشرده سازي امکانپذير باشدالبته زياد نگران ناکارامدي اين روش نباشيد. يادتان نرود، شما در جهاني زندگي مي کنيد که براساس يافته جديد ساختاري آشوبناک دارد.
مطمئن باشيد هندسه فراکتال بر بسياري از اشکال عالم حاکم است ؛ حتي اگر در نگاه اول چندان آشکا ر نباشد.

آرايش تكرار شونده   snow.gif

 

فراكتال ها اغلب با مراحل تكراري ايجاد مي شوند.براي ساخت يك فراكتال:

يك شكل هندسي مثل يك خط يا مثلث را در بگيريد و روي شكل مورد نظر عملياتي انجام دهيد،‌حال شكلي پيچيده تر از شكل اوليه داريد.

همان عمليات را روي شكل جديد انجام دهيد، اينبار شكلي پيچيده تر از قبل داريد.

باز همان عمليات را تكرار كنيد و الي آخر. به نظر مي رسد مي توان تا بي نهايت ادامه داد.

هر عمليات تكرار شونده روي اشكال، منجر به پيدايش فراكتال ها نمي شود. مثلاً يك خط را بخش بخش كنيد و تا بي نهايت اين كار را ادامه دهيد،‌يك فراكتال ايجاد نخواهد شد.

در ادامه، مراحل تكرار در يك فراكتال را برسي مي كنيم:

بخشي از يك خط را در نظر بگيريد و يك سوم مياني آن را خارج سازيد.آنچه باقي مانده يك خط است با يك فضاي خالي مياني

اين كار را تكرار كنيد يعني يك سوم مياني بخش هاي باقي مانده خط را خارج سازيد. حال تصور كنيد اين كار را تا بي نهايت انجام مي دهيد. آنچه حاصل مي شود فراكتال معروفي به نام " غبار كانتور" است.

 

تولید اشکال فراکتالی :

اشکال فراکتالی معمولا به کمک توابع بازگشتی تولید می شوند.مثلا تابع بازگشتیf(n)=f(n)*f(n)+c  یا f(n)=f(n)^2+c  یک تابع فراکتال است. این معادله ی به خصوص یک فراکتال معروف ، موسوم به مجموعه ی جولیا را تشکیل می دهدjulia1.gif

 

          در این معادله c یک عدد مختلط (شامل یک عدد موهومی) است که می تواند هر مقداری باشد و نتیجه ی آن یک مجموعه ی جولیای متفاوت باشد. n به جای مختصات نقطه قرار می گیرد

این موضوع را در نظر داشته باشید زیرا به زودی به آن باز می گردیم . این مختصات ویژه هستند زیرا همان طور که حدس زدید اعداد موهومی را در بر می گیرند.هنگامی که این مختصات

(x,y) هستند ، در هندسه ی فراکتال به صورت x+iy نشان داده می شوند . به عبارت دیگر ، x

مقداری ثابت و y  یک عدد موهومی است . همان طور که در مبحث اعداد مختلط  مشاهده کردید، محور x نشان دهنده ی اعداد حقیقی و محور y  نشان دهنده ی اعداد موهومی است .

حال به تابع فراکتال بر می گردیم . از مختصات (x+iy) به جای n استفاده می کنیم . حالا می پرسید که این تابع چه طور نمودارهای بزرگ فراکتال را می سازد . بسیار خوب ، نتیجه ی یک تابع ، به جای این که یک خط شود ، تنها یک نقطه را نمایش می دهد ـ که اگر ما به تعریف یک نقطه نگاه کنیم ، می تواند بی نهایت کوچک باشد ـ  که بیان می کند چه طور می توانیم یک قسمت از یک فراکتال را بزرگ کرده و به فراکتال جدید کاملی برسیم . نقطه در مختصات n قرار دارد . البته فراکتال ها بسیار رنگارنگ هستند. حالا این رنگ ها چه طور انتخاب می شوند؟ مثل هر چیز دیگر ، نسبتاً ساده است . ابتدا لازم است که یک نقطه را رنگ کنید ، بیایید نقطه (2+1i)

را در نظر بگیریم . برای مقدار c از (1+1i) استفاده می کنیم . به خاطر آورید که c می تواند هر عدد مختلطی باشد . حال این را در معادله قرار می دهیم .

   

f(n)=f(2+1i)=(2+1i)(2+1i)+(1+1i)

     =2*2+2i+2i+i^2+1+1i=5+5i-1=4+5i                   (i^2=-1)

      

این ها مختصات جدید ما هستند . به یاد آورید که اگر یک مجموعه از مختصات را در یک تابع قرار دهید ، نتیجه یک مجموعه ی جدید از مختصات است . 4+5i مجموعه ی مختصات جدید است . هنوز کار تمام نشده است ، عمل بالا یک تکرار را نشان می دهد . مجموعه ی مختصات را وارد تابع می کنیم تا بتوانیم ثابت کنیم که یک نقطه  :

(a روی نمودار قرار نمی گیرد (مثال : در یک نمودار 10*10  مؤلفه های جدیدی  که به دست می آیند(97 ، 234-) هستند) 

(b هرگز نمودار را ترک نمی کند (این قانون بعد از 200 بار تکرار ، اگر نقطه باز هم روی نمودار باشد ، صادق است .)

          نحََوه ی انتخاب رنگ به این صورت است که اگر نقطه بعد از یک بار تکرار نمودار را ترک کند ، یک رنگ به آن نسبت می دهیم . هر نقطه بعد از آن ، که بعد از یک تکرار نمودار را ترک کند ، همان رنگ را دارد . تمام نقاطی که بعد از 2 تکرار نمودار را ترک می کنند ، با یک رنگ مشخص نشان داده می شوند و هر نقطه ای که نمودار را هرگز ترک نکند با رنگ متمایز معمولاً سیاه علامت گذاری می شود . بعد از انجام این فرایند ، برای تمام نقاط داخل این صفحه ، نتیجه ای نظیر این مجموعه ی جولیا می شود .

 

تابع f(x)=f(x-1)^2+c   فراکتال دیگری را موسوم به مجموعه ی مندلبرات می سازد.mandel.gif

 

همان طور که می بینید ، در بسیاری از حالات ، 200 تکرار لازم است تا تنها یک نقطه تعیین

شود . در اغلب کامپیوترها ، معمولاً تعداد نقاط برای یک فراکتال 303,200 تاست . به همین

دلیل است که برای محاسبه ی عملیات زیاد و دقت انجام آن ها به کامپیوتر نیاز داریم .

 

          فراکتال ها تصویری از یک زندگی واقعی دارند . کامپیوترها می توانند یک شکل واقعی را بگیرند و با انجام تکرار زیاد به آن شکل تخیلی بدهند . یک معادله ی فراکتال می توان ساخت که ََکنند .

 

اين روزها از فراکتالها به عنوان يکي از ابزارهاي مهم در گرافيک رايانه اي نام مي برند، اما هنگام پيدايش اين مفهوم جديد بيشترين نقش را در فشرده سازي فايلهاي تصويري بازي کردند.

                       

 



 

/ 3 نظر / 13 بازدید
ehsan

آقای رنجبر سلام...بدون هيچ چشم داشتی(!) عرض می کنم مطالبی که در مورد فراکتال ها نوشتيد خيلی مفيده...البته ما به سبب اينکه از محضر جنابعالی بهره مند بوديم کم و بيش اين ها رو می دونستيم ولی در کل عاليه... اينجور که ميگن الآن بايد ايران باشيد...ما هم اين ۳شنبه به قول خسته "شاخو ميکشيم" و ميايم ايران... اميدوارم که لحظات خوبی رو سپری کنيد...وقت کرديد يه سر به وبلاگ حقير هم بزنيد واسه اطلاعات عمومی بد نيست. ارادتمند شما...احسان

elahe

با سلام و خسته نباشيد مطلب خيلي خوبي بود البته بعضي جاها را متوجه نشدم شايد چون هنوز دانش آموز سال 2 دبيرستان هستم البته اعداد مختلط را مي شناسم مي خواستم بدانم آيا كتاب يا سايتي را مي شناسيد كه در آن بتوانم مطالب بيشتري در اين زمينه پيدا كنم ؟ با تشكر

روح

بسم الله ارحمن الرحيم سلام خسته نباشيد مطلب خوبي بود. اگه مي تونيد درباره ي مسائل حل نشده ي هيلبرت يه مقاله ي ترجمه شده (همون مقاله ي هيلبرت) رو برام سند كنيد. ممنون مي شم باور كنيد زياد دنبالش گشتم ولي ناكام بودم. ياعلي