رياضيات زيبا وشگفت انگيز

از زیبایی هاو شگفتی های ریاضی سخن گفتن آسان است اما درک آن متاسفانه برای همه کس آسان نیست. زیبایی های صوری را همه می بینند و همه هم تقریبا" بیک اندازه از آنها لذت می برند. اگر منظره ای یا صورتی یا تابلویی در نظر شما زیبا باشد، همان منظره، صورت یا تابلو در نظر دیگران هم کم و بیش به همان اندازه زیبا خواهد بود و دیگران هم از آنها تقریبا" به همان اندازه که شما لذت میبرید، لذت خواهند برد. اما زیباییهای ذهنی و لذت بردن از آنها مستلزم داشتن زمینه ی ذهنی مناسب است. بعنوان مثال، عرفان و فلسفه عرصه هایی از اندیشه بشری هستند که کاملا" ذهنی اند. اگر کسی بخواهد این رشته ها را درک کند و آنچه که فلاسفه و عرفا و رهروان این طرق زیبایی نامیده اند را ببیند و احساس کند راهی ندارد جز آنکه الفباء این عرصه های تفکر را بیاموزد و از  "هفت شهر" آنها بگذرد و مراحل و مراتب آنها را طی کند تا زمینه های لازم را برای ذهن خود بمنظور درک آن زیبایی ها فراهم نماید و از این راه به شناخت و لذت برسد.

 

ریاضییات نیز که محصول مستقیم نبوغ بشر است عرصه ای است ذهنی و از قاعده فوق مستثنا نیست. برای آنکه بتوان زیبایی های آنرا دید و شگفتی ها و عظمت قدرت آنرا در تشخیص و کشف حقیقت و حل مسائل درک کرد باید الفباء آنرا آموخت، اصول آنرا فرا گرفت و با تمرین و ممارست، روزگاری با آنها مانوس بود تا از این راه به درجاتی از شناخت رسید و لذت همنشینی با آنرا احساس کرد. ریاضیات البته عرصه های عملی هم فراوان دارد که مشاهده آثار آنها رضایت مندی و لذتی از نوع دیگر را در انسان ایجاد میکند.  

 

در ریاضیات شش عدد وجود دارند که از بقیه ی اعداد متمایزند زیرا آنها ویژگی هایی دارند که سایر اعداد ندارند. این اعداد عبارتند از : صفر، یک، پی(نسبت محیط دایره به قطر آن)، e  (عدد اویلر)،i   (مبنای اعداد مختلط) و فای(نسبت طلایی). اویلر ریاضیدان سویسی قرن هجدهم رابطه ای بین پنج تا از این اعداد را بصورت این معادله کشف کرد:                     

                                                    102019696_9a11d7e236_m.jpg

 اگر این معادله را در یک قاب عکس قرار داده و روی دیوار و در کنار تابلوی مونالیزا نصب کنید، در چشم یک ریاضیدان نه تنها هیچ از مونالیزا کم ندارد بلکه میتواند بسیار شگفت انگیز تر هم باشد. مونالیزا را تقریبا" هر کسی به اندازه فهمی که از هنر نقاشی دارد درک میکند و بدیهی است هر چه این فهم عمیق تر و فنی تر باشد، درک هم عمیق تر خواهد بود. اما زیبایی و شگفتی این معادله را تنها کسی میفهمد که با اعداد الفت دراز داشته و بویژه این پنج عدد را شناخته و چگونگی خلقت آنها را فهمیده باشد و بداند که هر چند آنها به ظاهر نزدیک هم اند اما ماهیت آنها به اندازه کهکشانها از یکدیگر دور است ولی وقتی استادانه در کنار هم قرار میگیرند چنان با شوق با یکدیگر می جوشند که تعادلی متقارن و بس زیبا و بدیع بوجود می اورند. تازه این معادله خود حالت خاصی از یک معادله کلی تر، زیبا تر و شگفت انگیز تری است که پای دو نسبت مثلثاتی اصلی را هم به میان میکشد :

 

                            101984239_d2da8589c8_m.jpg  

                                    

                                                        ***************              

                                                                                                                       

 

از این  "تابلو ها" که هر کدام حاصل نبوغ یک ریاضیدان است در دنیای بزرگ ریاضیات فراوان یافت میشود. تقریبا" دو هزار سال پیش  "هارون"  ریاضیدان ، مهندس و مساح رمین های زراعتی در مصر باستان فرمولی کشف کرد که مساحت مثلث را از روی طولهای سه ضلع آن به دست میدهد. اگر طول اضلاع مثلثی را به  a   و  b  و  c  و نصف محیط آنرا به  p   نشان دهیم، آنگاه مساحت مثلث،  A ، از روی فرمول هارون محاسبه میشود :

 

    101984241_d688d2ebd2_m.jpg                                            

     

                          

تقریبا" ششصد سال پس از هارون مصری، براهماگوپتای هندی فرمول مشابهی برای چهار ضلعی محاطی کشف کرد. اگر طول اضلاع یک چهار ضلعی محاطی را به  a   ،   b   ،  c   و  d    و نصف محیط آنرا به p     نشان دهیم، آنگاه مساحت چهار ضلعی،   A   ، از روی فرمول براهماگوپتا محاسبه میشود:

                                       101993410_068deaad4a_m.jpg

                                     101990118_84c2e7f20c_m.jpg                                              

     

آیا این فرمولها را با اینهمه سادگی شکل و تقارن جز زیبا چیز دیگری میتوان نامید؟ 

               

 

                                                       *************                  

                  

عدد   پی   بدون تردید یکی از مهمترین و اسرار آمیز ترین اعداد ریاضی است. محققین بسیاری در گوشه و کنار جهان از زمان باستان تا به امروز (و بویژه در سالهای اخیر پس از پیدایش کامپیوتر) میلیونها ساعت از وقت خود را صرف مطالعه این عدد اسرارآمیز کرده اند و هر چه بیشتر در باره اش تحقیق میکنند و بیشتر میفهمند، به پیچیدگی و اسرارامیز بودن آن بیشتر افزوده میشود. بیش از 200 بیلیون از ارقام بعد از ممیز آنرا کشف کرده اند اما هرگز انظباطی در ترتیب آنها مشاهده نشده است. چرا ریاضیات که سراسر انظباط است گاهی این چنین بی انظباط میشود که دربیش از 200 بیلیون رقم هم هیچ ترتیبی مشاهده نمیشود؟ تازگی ها محققینی که در بارهعدد پی  تحقیق میکنند، به فکر افتادهاند که ممکن است بتوانند گروههایی از ارقام پی را پیدا کنند که به همان صورت گروهی و به شکلی منظم و با قاعده تکرار شوند. آنها این را "نظمی در بی نظمی" نامیده اند اما هنوز نتیجه قطعی حاصل نشده است. با اینهمه آیا این شگفت انگیز و اسرار آمیز نیست که در میان اینهمه بی نظمی ارقام پی، رقمهای 358 ام، 359 ام و 360 ام بعد از ممیز این رشته بی انتها بترتیب اعداد 3 و 6 و 0 هستند که عدد (360) را تشکیل میدهند که درجات موجود در دایره است؟! آیا این یک تصادف است یا یک راز؟  در زیر، عدد پی را تا 360  رقم بعداز ممیز در شش ردیف شصت تایی مشاهده میکنید. بخصوص به سه رقم آخر آن توجه فرمایید :  

 

 

 98475488_f9b0ec1c6b_o.jpg

حالا شما اگر آرک تانژانت یک، دو و سه را با هم جمع کنید همین عدد اسرار آمیز بسادگی پیدا میشود:

 

                                          97170997_b3125ee2b2.jpg

              

نه تنها این معادله به خودی خود زیباست بلکه برهان آن نیز بسیار زیباست خصوصن که به "برهان بی کلام"شهرت یافته است یعنی بوسیله یک "شکل" و در کمال ایجاز این فرمول ثابت میشود                                                                                                                                     

 

یکی از شاگردان من که هزار رقم بعد از ممیز عدد پی را فقط بخاطر تفنن و اینکه قدرت حافظه اش را نشان بدهداز حفظ کرده بود میگفت که برای از حفظ کردن آنها یک "ریتمی" را پیدا کرده است و وقتیکه 45 دقیقه وقت خواست تا در حضور عده ای منجمله روزنامه نگاران آن هزار رقم را روی تخته بنویسد، گروه گروه ارقام را مینوشت و بین این گروهها جاهایی را خالی میگذاشت و بعد بر میگشت و آن جاهای خالی را با ارقام دیگری پر میکرد تا هزار رقم کامل شد. قابل توجه است که بدانید رکورد حفظ کردن ارقام بعد از ممیز عدد پی متعلق به یک ژاپنی بنام Hiroyuki Goto  است که در سال 1995 توانست 42195 رقم را حفظ کند.

                                                                                                             

                                                             ***************          

 

       در حدود 2300 سال پیش، اقلیدس ثابت کرد که اعداد اول پایان ناپذیرند. برهان او تا به امروز یکی از زیبا ترین برهان های علم ریاضی و از شاهکار های ریاضیات استدلالی است که بواسطه سادگی و ایجاز، بسیار قابل تحسین است. البته برهان های دیگری هم هستند که در مقام خود زیبا و ستودنی میباشند ولی برهان اقلیدس چیز دیگری است. او چنین استدلال کرد:اعداد اول بی پایانند اما اگر کسی ادعا کند که پایانی بر اعداد اول وجود دارد، اجازه دهید آن "بزرگترین" عدد اول را   PL   بنامیم( مخفف The Last Prime )، پس سلسله اعداد اول از ابتدا تا انتها خاهد شد :

 

                             102013764_084416cf17.jpg                                                            

     

حالا همه این اعداد را در هم ضرب کرده و به حاصلضرب آنها یکواحد اضافه میکنیم و نام این عدد جدید را Qمیگذاریم :

                          101984242_f78a347d82.jpg

  Q عدد جالبی است. اگر آنرا بر هر یک از اعداد اول موجود (از  2  گرفته تا  PL ) تقسیم کنیم، باقیمانده هر تقسیم برابر یک خواهد شد. پس  Q خود "اول" است و بدیهی است که از  PL  هم بزرگتر است( چون برابر است با حاصلضرب    PL در تمام اعداد اول موجود قبل از آن، به اضافه یک ). پس PL  بزرگترین عدد اول نیست و Q  از آن بزرگتر است. این روش استدلال ریاضی را در فارسی، برهان خلف ، در انگلیسی Proof by Contradiction و در لاتین Reductio ad Absurdum میگویند.

 

/ 3 نظر / 52 بازدید
امير

واقعا" زيبا و عالی بود خيلی لذت بردم به خصوص از اون نسبت طلايی و ثابت کاپرکار.

علی شایعی

بسیار بسیار جالب بود

ایرین

مقاله ی فوق العاده ای بود! واقعا لذت بردم واقعا که ریاضیات دنیایی از شگفتی های بی پایانه. کدوم علمی مثل ریاضی فیزیک و نجوم این قدر شگفتی و زیبایی داره؟